Ana SayfaYaşamdanYazılımda derin öğrenme modeli hayatın her alanında yer almaya başladı

Yazılımda derin öğrenme modeli hayatın her alanında yer almaya başladı

- Advertisement -

Teknolojiyle beraber hayatımızın bir parçası haline gelen derin öğrenme uygulamaları, otomatik sürüşten tıbbi cihazlara kadar birçok sektörde kullanılıyor. Uzmanlar derin öğrenmenin, iş makinelerindeki arızaların önceden tespit edilmesini sağlayarak, ağır makinelerin etrafındaki işçi güvenliğini artırmaya yardımcı olmasından kanser araştırmalarına kadar birçok alanda kullanıldığına dikkat çekiyor. Derin öğrenme, otomatik işitme ve konuşma çevirisinde de kullanılıyor.

Derin öğrenme bir veya daha fazla gizli katman içeren yapay sinir ağları ve benzeri makine öğrenme algoritmalarını kapsayan çalışma alanı. Derin öğrenmede en az bir adet yapay sinir ağı kullanılarak ve birçok algoritma ile, bilgisayarın eldeki verilerden yeni veriler elde ediliyor.

Yazılım Mühendisi Uzmanı Doç. Dr. Türker Tekin Ergüzel, derin öğrenme kavramına ilişkin değerlendirmede bulundu.

Doç. Dr. Türker Tekin Ergüzel, derin öğrenmeyi “bilgisayarlara insan yetenek ve becerilerinin uygulanmasını öğreten bir makine öğrenimi tekniği” olarak tanımlayarak “Derin öğrenme, örnekler üzerinden öğrenme modelini temsil eder. Derin öğrenme, sürücüsüz araçların, akıllı robotların ardındaki kilit teknolojidir. Örneğin, bir yayanın, bir elektrik direğinden veya seyir halindeki bir araçtan otomatik olarak ayırt edilmesini sağlamakla birlikte; telefonlar, tabletler, TV’ler ve hands-free hoparlörler gibi tüketici cihazların sesle kontrol edilebilmesini de mümkün kılar. Derin öğrenme, son zamanlarda çok fazla ilgi görmekte ve daha önce teknolojik anlamda elde edilemeyen sonuçlara ulaşmaktadır.” diye konuştu.

İNSAN DÜZEYİNİ AŞACAK DOĞRULUK: DERİN ÖĞRENME MODELİ

Derin öğrenme modeli, insan düzeyini aşacak doğruluk sağlayabiliyor. Doç. Dr. Türker Tekin Ergüzel, “Bir bilgisayar modeli oluşturup, doğrudan görüntülerden, metinden veya sesten ikili/çoklu sınıflandırma görevlerini gerçekleştirir. Derin öğrenme modelleri, bazen insan düzeyindeki performansı aşacak seviyede doğruluk sağlayabilir. Modeller, çok sayıda etiketli veri seti ve birçok katman içeren sinir ağı mimarileri kullanılarak eğitilir.” dedi.

DERİN ÖĞRENME MODELİNDE YÜKSEK BİLGİ İŞLEM GÜCÜNÜN ÖNEMİ

Derin öğrenmenin ilk olarak 1980’lerde teorize edilmiş olsa da son zamanlarda faydalı hale gelmesinin iki ana nedeni olduğunu belirten Üsküdar Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Yazılım Mühendisliği Bölüm Başkanı Doç. Dr. Türker Tekin Ergüzel, bu nedenleri şöyle açıkladı:

“Derin öğrenme, büyük miktarda etiketlenmiş veri gerektirir (milyonlarca görüntü ve/veya binlerce saatlik video). Bu verilerin toplanabilmesi ve depolanması günümüz teknolojisi sayesinde mümkün olabilmiştir. Derin öğrenme, önemli bilgi işlem gücü gerektirir. Yüksek performanslı GPU’lar, derin öğrenme için verimli olan paralel bir mimariye sahiptir. Bu, kümeler veya bulut bilişim ile birleştirildiğinde, geliştirme ekiplerinin derin öğrenme ağı için eğitim süresini haftalardan saatlere veya daha azına indirmesini sağlar.”

 

GÜVENLİK AÇISINDAN KRİTİK UYGULAMALARDA DERİN ÖĞRENME MODELİNİN ÖNEMİ

Derin öğrenme, konvansiyonel makine öğrenmesi yöntemlerine göre çok sayıda verinin probleme dahil edilmesi koşulu altında daha yüksek seviyelerde sınıflandırma doğruluğu sağlayabiliyor.

Doç. Dr. Türker Tekin Ergüzel, derin öğrenmenin güvenlik açısından önemine şu şekilde değiniyor:

Bu, tüketici elektroniğinin kullanıcı beklentilerini karşılamasına yardımcı olur ve sürücüsüz arabalar gibi güvenlik açısından kritik uygulamalar için çok önemlidir. Derin öğrenmedeki son gelişmeler sayesinde, derin öğrenmeye dayalı olarak geliştirilen modeller, görüntülerdeki nesneleri sınıflandırma gibi bazı görevlerde, insanlardan daha iyi performans elde edilebilmiştir.

DERİN ÖĞRENME MODELİNİN KULLANILDIĞI ÖNEMLİ ALANLAR

Derin öğrenme uygulamalarının, otomatik sürüşten tıbbi cihazlara kadar birçok sektörde kullanıldığını kaydeden Doç. Dr. Türker Tekin Ergüzel, bu sektörleri şöyle sıraladı:

Otomatik Sürüş: Otomotiv araştırmacıları, dur işaretleri ve trafik ışıkları gibi nesneleri otomatik olarak algılamak için derin öğrenmeyi kullanır. Bu sayede yayalar tespit edilebilmekte ve bu da kazaların azalmasına yardımcı olmaktadır. 

Havacılık ve Savunma: Derin öğrenme, uydular tarafından görüntülenen nesneleri belirlemek ve birlikler için güvenli veya güvensiz bölgelerin tespiti için kullanılır.

TIBBİ ARAŞTIRMALARDAN ENDÜSTRİYEL OTOMASYONA HER ALANDA DERİN ÖĞRENME MODELİ VAR

Tıbbi araştırmalar: Kanser araştırmacıları, kanser hücrelerini otomatik olarak tespit etmek için derin öğrenmeyi kullanıyor. Çalışmada kanser hücrelerinin doğru bir şekilde tanımlanması amacıyla, derin öğrenme modelini eğitmede kullanılan yüksek boyutlu veri sağlayan gelişmiş bir mikroskop oluşturulmuş durumda.

Bu alanda özellikle nörogörüntüleme verileri ile yürütülen psikiyatrik hastaların sınıflandırılması, tedavi sonucu öngörü çalışmaları dikkat çekiyor.

Benzer çalışmalar Üsküdar Üniversitesi’nin de yer aldığı Uluslararası Beyin Araştırmaları Konsorsiyumu’nda Stanford University, New York University, Ottawa University ortaklığı ile büyük veri analizleri ile yürütülüyor.

Yürütülmekte olan çalışmalara Üsküdar Üniversitesi’nin Tedavisel Beyin Haritalama ve Nöroteknoloji Çalışma grubu sayfasında da detaylarıyla yer verilmiş durumda.

Endüstriyel otomasyon: Derin öğrenme, iş makinelerindeki arızaların önceden tespit edilmesini sağlayarak, ağır makinelerin etrafındaki işçi güvenliğini artırmaya yardımcı olur.

Elektronik: Derin öğrenme, otomatik işitme ve konuşma çevirisinde de kullanılmaktadır. Örneğin, sesinize yanıt veren ve tercihlerinizi bilen ev yardım cihazları, derin öğrenme uygulamaları tarafından desteklenmektedir.

- Reklam -
Exit mobile version